B.P. 329 MAROUA

Département de Mathématiques

ANNÉE SCOLAIRE 2009/2010

 $Classe : T^{le}C$

Coef: 5; Durée: 4 h Prof: M. Loumsia A.

SÉQUENCE N°4 / ÉPREUVE DE MATHÉMATIQUES / MARS 2010

L'épreuve comporte 2 exercices et un problème. La qualité de la rédaction, la présentation et la clarté des raisonnements entreront pour une part importante dans l'appréciation des copies.

Exercice 1 [4.5 pts]

Le plan est muni d'un repère orthonormal direct $(O; \overrightarrow{u}, \overrightarrow{v})$. On considère l'application f qui au point M d'affixe z fait correspondre le point M' d'affixe z' tel que :

$$z' = \frac{3+4i}{5}z + \frac{1-2i}{5}$$

1. On note x et x', y et y' les parties réelles et les parties imaginaires de z et z'.

Démontrer que : $\begin{cases} x' = \frac{1}{5}(3x - 4y + 1) \\ y' = \frac{1}{5}(4x + 3y - 2) \end{cases}$

0.5pt

1pt

a. Déterminer l'ensemble des points invariants par f.

0.5pt

b. Quelle est la nature de l'application f.

- 0.5pt
- 3. Déterminer l'ensemble \mathcal{D} des points M d'affixe z tels que z' soit réel.
- 4. On cherche à déterminer les points de \mathcal{D} dont les coordonnées sont entières. a. Donner une solution particulière $(x_0; y_0)$ appartenant à \mathbb{Z}^2 de l'équation 4x + 3y = 2. 0.5pt
 - b. Déterminer l'ensemble de solutions appartenant à \mathbb{Z}^2 de l'équation 4x + 3y = 2.
- 5. On considère les points M d'affixe z = x + iy tels que x = 1 et $y \in \mathbb{Z}$. Le point M' = f(M)a pour affixe z'. Déterminer les entiers y tels que Re(z') et Im(z') soient entiers. (On pourra utiliser les congruences modulo 5) 1pt

Exercice 2 [4.5pts]

L'espace \mathscr{E} est rapporté à un repère orthonormé direct $(O; \overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$. On considère les points A(-2;1;3), B(0;2;-2), C(2;1;1), D(1;0;2) et le plan (P) d'équation 2x-y+2z+1=0.

- 1 a. Montrer que les points A, B et C ne sont pas alignés, puis en déduire une équation cartésienne du plan (ABC). 0.75pt
 - b. Démontrer que les points A, B, C et D ne sont pas coplanaires.

0.5pt

c. Calculer l'aire du triangle ABC et le volume du tétraèdre ABCD.

0.5pt

0.5pt

2. Déterminer l'expression analytique de la réflexion de plan (P).

0.75pt

- Déterminer les coordonnées du point G tel que $G = bar\{(A,1); (B,-2); (C,3)\}.$
 - Déterminer l'ensemble (\mathcal{S}) des points M de l'espace tels que : 0.75pt

$$(\overrightarrow{AM} - 2\overrightarrow{BM} + 3\overrightarrow{CM}).\overrightarrow{BM} = 0.$$

Déterminer l'intersection du plan (P) et de l'ensemble (\mathcal{S}) .

 $0.75 \mathrm{pt}$

Problème [11points]

Partie A:

Résoudre dans \mathbb{R} l'équation différentielle (E) : $y' + m^2 y = 0 \ (m \in \mathbb{R}^*), \ y(0) = 40.$ 0.5pt

2. Applications

Soit θ la température d'un corps à l'instant t. La température ambiante est $30^{\circ}C$. A chaque instant t, on pose : $x(t) = \theta(t) - 30$.

On suppose que la fonction x est dérivable sur \mathbb{R} et qu'elle vérifie : $x' = -m^2x$ $(m \in \mathbb{R}^*)$.

A l'instant 0 la température du corps est $70^{\circ}C$ et au bout de 5 minutes elle n'est plus que $60^{\circ}C$.

a. Déterminer $\theta(t)$, où t est mesuré en minutes. 1.5pt

b. A quelle température sera le corps au bout de 20 minutes?

Partie B:

ABC est un triangle et f une application affine du plan telle que f(A) = C, f(B) = B et f(C) = A.

- 1. Montrer que $f \circ f = Id$. 0.5pt
- 2. Montrer que le milieu I de [AC] est invariant par f. 0.5pt
- 3 Montrer que la droite (BI) est invariante point par point par f. 0.5pt
- 4 Montrer que la droite (AC) est globalement invariante par f. 0.5pt
- 5. Soit M un point quelconque du plan et M' son image par f.
 - a. Montrer que (AC) / (MM'). 0.5pt
 - b. Montrer que le milieu H de [MM'] appartient à (IB). 0.5pt
 - c. En déduire que f est une affinité dont on déterminera les éléments caractéristiques. 0.5pt

Partie C:

On considère la fonction f, définie sur l'intervalle $]-1;+\infty[$ par $f(x)=\frac{e^x}{(1+x)^2}$. On désigne par (\mathcal{C}) la courbe représentative de f dans le plan rapporté à un repère orthonormé $(O;\overrightarrow{i},\overrightarrow{j})$.

- 1. a. Calculer la limite de cette fonction lorsque x tend vers $+\infty$. 0.5pt
 - b. Calculer la limite de cette fonction lorsque x tend vers -1. 0.5pt
 - c. Que représente la droite d'équation x = -1 pour la courbe (\mathcal{C}) ? 0.25pt
- 2. Calculer f'(x) et montrer que son signe est celui de $\frac{x-1}{x+1}$.
- 3. Dresser le tableau de variation de f. 0.5pt
- 4 Tracer la courbe (C), les droites d'équations x = -1 et y = 1, ainsi que la tangente à cette courbe en son point d'abscisse 0. (Unité graphique : 4 cm).
- 5. a. Montrer que l'équation f(x) = 1 admet une unique solution, notée α dans l'intervalle [1;10].
 - b. Utiliser le graphique précédent pour donner deux nombres entiers consécutifs a et b tels que $\alpha \in [a,b]$.

 \ll Ce qui est affirmé sans preuve peut être nié sans preuve. \gg

EUCLIDE D'ALEXANDRIE