MINESEC Lycée de Nkolnda-Nsimalen

Département de Mathématiques

www.easy-maths.org

Année scolaire: 2012-2013

Classe: T^{le} C Durée: 4 heures

1 pt

19 Janvier 2013 Séquence 3

Coefficient: 05

Épreuve de Mathématiques

Enseignant: Romaric TCHAPNGA

Le correcteur tiendra compte de la rigueur dans la rédaction et de la clarté de la copie. Il est demandé à l'élève de justifier toutes ses affirmations.

EXERCICE I 3,5 points

On considère les suites (I_n) et (J_n) définies sur \mathbb{N} par ;

 $\forall n \in \mathbb{N}, \quad I_n = \int_0^{\frac{\pi}{2}} e^{-nx} \sin x \, dx \text{ et } J_n = \int_0^{\frac{\pi}{2}} e^{-nx} \cos x \, dx.$

1. Calculer I_0 et J_0 . 0,5 pt

2. On suppose que $n \ge 1$.

a. En utilisant une intégration par partieS, montrer que $I_n + nJ_n = 1$ et $-nI_n + J_n = e^{-\frac{n\pi}{2}}$. 1,5

b. Déduire de **2.a** l'expression de I_n et J_n en fonction de l'entier neturel n. 1 pt

3. Les suites (I_n) et (J_n) sont-elles convergentes ? 0,5 pt

EXERCICE II 5 points

I - Repondre aux questions suivantes:

1. Resoudre dans \mathbb{R} ;

(a):
$$\ln(x^2 + 4x - 5) = \ln(x + 1)$$
; (b): $2.8^x - 9.4^x + 3.2^x + 4 = 0$.

2. Ecrire le nombre 2012 dans le système de numération de base 8. 0,5 pt

3. Effectuer l'opération suivante : $\overline{133}^5 \times \overline{2431}^5$. 0,5 pt

4. Soit θ un réel tel que $0 < \theta < \frac{\pi}{2}$. Déterminer le module et l'argument de $Z = 1 - i \tan \theta$.

II - Soit z un nombre complexe distinct de 4. Soit Z un nombre complexe tel que $Z = \frac{iz-4}{z-4}$

1. On pose z = x + iy. Déterminer la partie réelle et la partie imaginaire de Z en fonction de x et y.

2. Déterminer l'ensemble (C) des points M(z) tel que Z soit réel. Reconnaître la nature de (C) et caractériser cet ensemble. 0,5 pt

3. Déterminer l'ensemble (D) des points M(z) tel que Z soit imaginaire pur. 0,5 pt

EXERCICE III 3.5 points

A et B sont deux points distincts du plan orienté. On designe par $r_{\rm A}$ la rotation de centre A et d'angle $-\frac{\pi}{3}$ et r_B la rotation de centre B et d'angle $\frac{2\pi}{3}$. Soit M un point du plan M_1 son image par r_A et M_2 son image par $r_{\rm B}$.

1. Montrer que, le milieu J du segment $[M_1M_2]$ est fixe par $r_B \circ r_A^{-1}$.

0,5 pt

2. Montrer que J appartient au cercle de diamètre [AB].

0,75 pt

- **3.** On suppose que M est distinct des points A et B.
 - **a.** Exprimer $(\overrightarrow{MM_1}, \overrightarrow{MM_2})$ en fonction de $(\overrightarrow{MA}, \overrightarrow{MB})$.

- 0,5 pt
- **b.** Montrer que les points M, M_1 et M_2 sont alignés ssi $(\overrightarrow{MA}, \overrightarrow{MB}) = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$. **1 pt**
- c. Déduire l'ensemble (Γ) des points M du plan tels que M, M_1 et M_2 sont alignés. 0,75 pt

PROBLEME 8 points

Le problème comporte trois parties A, B et C.

Partie A:

- **1.** Soit la fonction h_1 définie par : $h_1(x) = x \ln x$.
 - **a.** Dresser le tableau des variationd de h₁.

0,5 pt

b. En déduire le signe de h_1 .

0,75 pt

2. On définit la fonction f_1 par : $f_1(x) = \frac{x}{x - \ln x}$ Dresser le tableau des variations de f_1 .

0,5 pt

Partie B : Soient f et g les fonctions définies sur l'intervalle]0; $+\infty[$ par :

$$f(x) = \ln x \text{ et } g(x) = (\ln x)^2.$$

On note \mathscr{C} et \mathscr{C}' les courbes représentatives respectives de f et g dans un repère orthogonal.

- 1. Étudier les variations de g.
- **2. a.** Étudier le signe de $(\ln x)(1 \ln x)$ sur]0; $+\infty[$.
 - **b.** En déduire la position relative des deux courbes $\mathscr C$ et $\mathscr C'$ sur]0; $+\infty[$.
 - **c.** Tracer $\mathscr C$ et $\mathscr C'$ les courbes représentatives respectives de f et g dans un même repère orthogonal.
- **3.** Pour x appartenant à]0; $+\infty[$, M est le point de $\mathscr C$ d'abscisse x et N est le point de $\mathscr C'$ de même abscisse.
 - **a.** Soit h la fonction définie sur]0; $+\infty[$ par h(x) = f(x) g(x). Étudier les variations de la fonction h sur]0; $+\infty[$.
 - **b.** En déduire que sur l'intervalle [1 ; e], la valeur maximale de la distance MN est obtenue pour $x = \sqrt{e}$.
 - **c.** Résoudre dans]0; $+\infty$ [l'équation $(\ln x)^2 \ln x = 1$.
 - **d.** En déduire que, sur $]0;1[\,\cup\,]e;+\infty[$, il existe deux réels a et b (a < b) pour lesquels la distance MN est égale à 1.
- 4. a. Restitution organisée de connaissances

Démontrer la formule d'intégration par parties en utilisant la formule de dérivation d'un produit de deux fonctions dérivables, à dérivées continues sur un intervalle [a; b].

b. À l'aide d'une intégration par parties, calculer pour tout réel x > 0, $\int_1^x \ln t \, dt$. En déduire une primitive sur $]0; +\infty[$ de la fonction logarithme népérien.

- **c.** À l'aide d'une intégration par parties, et en utilisant le résultat prédent, calculer pour tout réel x > 0, $\int_{1}^{x} \ln t \times \ln t \, dt$.
- **d.** On considère la partie du plan délimitée par les courbes \mathscr{C} , \mathscr{C}' et les droites d'équations x=1 et x=e.

Déterminer l'aire $\mathcal A$ en unités d'aire de cette partie du plan.

Partie C:

- 1. Montrer que, pour tout x appartenant à I, f(x) appartient à I. 0,5 pt
- **2.** Soit la suite $(U_n)_{n \in \mathbb{N}^*}$ définie par $\begin{cases} U_1 = \frac{1}{2} \\ U_n = f(U_{n-1}) \text{ pour tout } n > 1 \end{cases}$
 - **a.** Montrer que, pour tout $n \in \mathbb{N}^*$, $U_n \in I$.
 - **b.** Montrer que, pour tout $x \in I$, $\left| f'(x) \right| \le \frac{1}{2}$.
 - $\boldsymbol{c}_{\boldsymbol{\cdot}}$ En appliquant le théorème de l'inégalité des accroissements finis, démontrer que :

$$\forall n > 1, \quad |U_n - \alpha| \le \frac{1}{2} |U_{n-1} - \alpha|.$$
 0,5 pt

- **d.** En déduire, par un raisonnement par récurrence, que : $\forall n \in \mathbb{N}^*$, $|U_n \alpha| \le \left(\frac{1}{2}\right)^n$. **0,5 pt**
- e. En déduire que (U_n) converge vers α .
- **f.** A priori, combien suffit-il de calculer de termes de la suite pour obtenir une valeur approchée de α à 10^{-7} près?
- 3. En utilisant la décroissance de f, montrer que α est compris entre deux termes consécutifs quelconques de la suite. En déduire un encadrement de α d'amplitude 10^{-7} .