UNIVERSITE DE YAOUNDE I

Ecole Normale Supérieure de Yaoundé

Concours d'entrée en première année du premier cycle

Série : Mathématiques Epreuve : Géométrie Durée : 3h Session : 2012

Exercice 1/7 points

Soit O, A, B et C quatre points du plan complexe P tels que ABC est de sens direct et isocèle en C, OAC est équilatéral de sens direct et C est le milieu de [O, B].

1. Faire une figure et placer les points O, A, B et C.

[1pt]

- 2. Montrer qu'il existe exactement deux isométries qui transforment O en B et A en C. [1pt]
- 3. Soit r le déplacement transformant O en B et A en C.

[1pt]

(a) Montrer que r est une rotation dont on donnera l'angle.

[0,5pt+0,5pt]

(b) Construire sur la figure ci-dessus le centre Ω de r. Justifier.

[1pt]

- 4. Soit $S_{(AC)}$ la réflexion d'axe (AC) et S l'antidéplacement appliquant O en B et A en C.
 - (a) Montrer que S est une symétrie d'axe (AC).

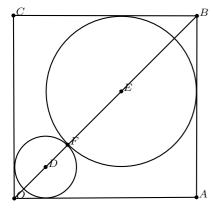
[1pt]

(b) En déduire que $S=t_{\overrightarrow{AC}}\circ S_{(AC)}$ où $t_{\overrightarrow{AC}}$ est la translation de vecteur \overrightarrow{AC} .

[1pt]

5. Soit (O, \vec{u}, \vec{v}) un repère orthonormé direct de P tel que A ait pour affixe z=2. Déterminer l'affixe du point Ω .

Exercice 2/7 points



Données.

OABC est un carré d'arête 1.

- (C1) est tangent à (OC) et à (OA).
- (C2) est tangent à (AB) et à (BC).
- (C1) et (C2) sont tangents en F.
- (C1) a pour centre D et pour rayon x.
- (C2) a pour centre E et pour rayon y.
- x < y et la somme des aires de (C1) et (C2) est maximale.
- 1. On voudrait déterminer OD et OE.
 - (a) Montrer que $OD = x\sqrt{2}$, $BE = y\sqrt{2}$ et $x + y = 2 \sqrt{2}$.

[0.5pt+0.5pt+1pt]

(b) Déterminer la somme des aires de (C1) et (C2); puis OD et OE.

[0,5pt+1pt]

- 2. Soit \mathcal{P} la parabole de foyer F et de directrice (BC).
 - (a) Montrer que $E \in \mathcal{P}$ et déterminer la paramètre de \mathcal{P} .

[0,5pt+1pt]

(b) Reproduire la figure précédente pour OA = 2cm.

[1pt]

(c) Construire sur la figure précédente la parabole \mathcal{P} , son sommet et son axe.

[1pt]

Exercice 3/6 points

- 1. Le plan (P) étant rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) , on considère l'application F qui à tout point M(x,y) de (P) associe le point M'(x',y') tel que x'=x-y+2 et y'=2y-1.
 - (a) L'application F est-elle une isométrie? Justifier.

|1pt|

(b) L'application F admet-elle de point invariant? Justifier.

|1pt|

(c) Déterminer les droites globalement invariantes par F.

[1pt]

- 2. Etant donné un repère (O, \vec{i} , \vec{j} , \vec{k}) de l'espace (\mathcal{E}), on considère le plan (Q) : x = y + z + 1 et la droite (d) de repère (O, $\vec{i} \vec{j} \vec{k}$).
 - (a) Montrer que (Q) et (d) sont orthogonaux en un point I à déterminer. [1pt]
 - (b) Déterminer l'expression analytique de la reflexion S par rapport à (Q). [1pt]
 - (c) Déterminer sans calcul la nature de $S \circ s$ où s est le demi-tour d'axe (d). [1pt]