MINESEC

Lycée de Japoma

Département de Mathématiques

www.easy-maths.org

Année scolaire: 2010-2011

Classe: 1^{ère} D Durée: 3 heures Séquence 2 Novembre 2010

Coef: 04

Épreuve de Mathématiques

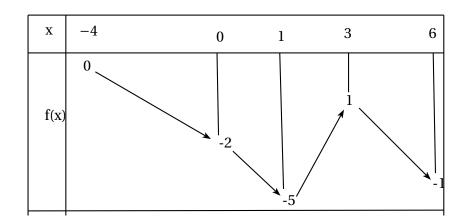
EXERCICE 1

Les parties A, B, C, D, et E sont indépendantes.

- A/ A et B sont deux points distincts du plan. Déterminer et construire le lieu des points M du plan tels que $(\overrightarrow{MA}, \overrightarrow{MB}) = \pi$.
- **B**/ PQR est un triangle tel que les angles $(\overrightarrow{QQ}, \overrightarrow{QP})$ et $(\overrightarrow{PR}, \overrightarrow{QO})$ ont respectivement pour mesures $-\frac{9\pi}{5}$ et $\frac{22\pi}{5}$.
 - 1. Déterminer les mesures principales des angles orientés suivants : $(\overrightarrow{PQ}, \overrightarrow{PR}), (\overrightarrow{RP}, \overrightarrow{RQ}), (\overrightarrow{QR}, \overrightarrow{QP})$.
 - 2. En déduire que le triangle PQR est isocèle.
- C/ 1. En remarquant que $\frac{\pi}{4} = 2 \times \frac{\pi}{8}$, démontrer que : $\cos \frac{\pi}{8} = \frac{\sqrt{2+\sqrt{2}}}{2}$ et $\sin \frac{\pi}{8} = \frac{\sqrt{2-\sqrt{2}}}{2}$
 - **2.** En remarquant que $\frac{3\pi}{8} = \frac{\pi}{2} \frac{\pi}{8}$, calculer $\cos \frac{3\pi}{8}$ et $\sin \frac{3\pi}{8}$. Justifier ensuite graphiquement le signe de $\cos \frac{3\pi}{8}$ et de $\sin \frac{3\pi}{8}$.
- **D/** 1. Ecrire $\cos 3x$ en fonction de $\cos x$ et $\sin 3x$ en fonction de $\sin x$.
 - **2.** Montrer que $\tan 3x = \tan x \frac{3 \tan^2 x}{1 3\tan^2 x}$.
- E/ 1. Résoudre dans $]-\pi,\pi]$ l'équation : $\cos x + \sqrt{3}\sin x = \sqrt{2}$.
 - 2. Représenter les images des solutions sur le cercle trigonométrique.

EXERCICE 2

Soit f une fonction dont le tableau de variations est le suivant :



- 1. Déterminer D_f .
- **2.** g est une autre fonction définie par : g(x) = f(1-3x).
 - **a.** Dresser le tableau de variation de g et en déduire D_g .
 - **b.** Déterminer le maximum et le minimum de f.

- **c.** Déterminer les extremums relatifs de f sur [0;3].
- **d.** Montrer que f est bornée sur [-4;6].

EXERCICE 3

Soit *f* la fonction définie par $f(x) = \frac{2x-1}{x-1}$.

- **1.** Déterminer D_f .
- **2.** Montrer que $\forall x \in D_f$, $f(x) = \frac{1}{x-2} + 2$.
- **3.** On pose $t(x) = \frac{1}{x}$. Déterminer t(x-1).
- **4.** Exprimer f(x) en fonction de t(x-1).
- **5.** Ecrire le programme de construction de (C_f) .
- **6.** Construire (C_t) et (C_f) dans le plan muni d'un repère $(O, \overrightarrow{\iota}, \overrightarrow{J})$, d'unité 1cm. (C_t) est la courbe de t et (C_f) est la courbe de f.
- 7. Donner la nature et les éléments caractéristiques de (C_f) .