Republique du Cameroun

Paix-Travail-Patrie

Ministère de l'Enseignement Supérieur . Université de Douala Faculté de Génie Industriel Republic of Cameroon

Peace-Work-fatherland

Ministry Of Higher Education University Of Douala Faculty Of Industrial Engineering

Année Académique 2008-2009

Academic Year 2008-2009

CONCOURS D'ENTREE EN 1^{ERE} ANNEE, SESSION DE SEPTEMPBRE 2008 FIRST YEAR ENTRANCE EXAMINATION, SEPTEMBER SESSION 2008

EPREUVE DE (PAPER OF) : MATHEMATIQUES (METHEMATICS) BAC : C,D,E et GCE A-Level Durée (Time) : 3 heures (hours)

Exercice 1 [3points]

Soit $(u_n)_n$ une suite convergente de nombres réels telle que $u_n > 0$ pour tout $n \in \mathbb{N}$. On suppose en outre que la suite (u_n) vérifie la relation suivante : $u_n u_{n-1} = u_{n-1} + 1$.

Montrer que la limite ℓ de la suite (u_n) est telle que $1 < \ell < 2$. (ℓ est appelé le nombre d'or).

Exercice 2 [6points]

Un fabricant de bonbons possède trois machines A, B et C qui fournissent respectivement 10%, 40% et 50% de la production totale de son usine. Une étude a montré que le pourcentage de bonbons défectueux est de 3,5% pour la machine A, de 15% pour la machine B et de 2,2% pour la machine C. On choisit au hasard un bonbon dans le bac.

- 1. Montrer que la probabilité que ce bonbon provienne de la machine C et soit défectueux est 0,011.
- 2. Calculer la probabilité que ce bonbon soit defectueux.
- 3. Calculer la probabilité que ce bonbon provienne de la machine C sachant qu'il est defecteux.
- 4. On prélève successivement dans le bac 10 bonbons sans remise. Calculer la probabilité d'obtenir un bonbon defectueux parmi ces dix prélèvements.

Exercice 3 [5,5points]

Dans le plan complexe muni d'un repère orthonormé (O, \vec{u}, \vec{v}) (unité graphique 2cm), on considère les points A, B, et C d'affixes respectives a = 2, b = 1 - i et c = 1 + i.

- 1. (a) Placer les points A, B et C sur une figure.
 - (b) Calculer $\frac{c-a}{b-a}$. En déduire que le triangle ABC est rectangle isocèle.
- 2. (a) On appelle r la rotation de centre A telle que r(B) = C. Déterminer l'angle de r et calculer l'affixe d du point D = r(C).
 - (b) Soit Γ le cercle de diamètre [BC]. Déterminer et construire l'image Γ' du cercle Γ par la rotation r.
- 3. Soit M un point de Γ d'affixe z, distinct de C et M' d'affixe z' son image par r.
 - (a) Montrer qu'il existe un réel θ appartenant à $\left[0; \frac{\pi}{2} \left[\cup \right] \frac{\pi}{2}; 2\pi \right]$ tel que $z = 1 + e^{i\theta}$.
 - (b) Exprimer z en fonction de θ
 - (c) Montrer que $\frac{z'-c}{z-c}$ est un réel. En déduire que les points C, M et M' sont alignés.
 - (d) Placer sur la figure le point M d'affixe $1+e^{i\frac{2\pi}{3}}$.

Problème [8 points]

On considère la fonction définie par $g(x) = (x+2)e^{-x}$. On note (C) sa courbe représentative dans le repère orthonormé (O, \vec{i}, \vec{j}) . (unité des axes 2cm).

- 1. Déterminer les limites de g en $-\infty$ et $+\infty$. Calculer g'(x) et en déduire le tableau de variation de g. Déterminer les branches infinies de (C) et tracer (C).
- 2. λ est un réel $((\lambda > 0))$: on note (Δ) la partie du plan limité par (C); l'axe des abscisses, l'axes des ordonnées et la droite d'équation $x = \lambda$; \mathcal{A} est l'aire de Δ en cm^2 .
 - (a) En utilisant une intégration par partie, calculer A en fonction de λ .
 - (b) Calculer $\lim_{\lambda \to +\infty} A$;
- 3. On note (S) le solide de révolution engendré par la rotation de (Δ) autour de l'axe des abscisses puis \mathcal{V} son volume en cm^3 .
 - (a) Démontrer que $h(x) = -e^{-2x} \left(\frac{x^2}{2} + \frac{5x}{2} + \frac{13}{4} \right)$ est une primitive sur \mathbb{R} de la fonction $f(x) = (g(x))^2$.
 - (b) En déduire la valeur \mathcal{V} en fonction de λ .
- 4. On considère l'équation différentielle suivante : $3f''(x) 2f'(x) f(x) = 4xe^{-x}$ (1).
 - (a) Résoudre dans $\mathbb{R} : 3f''(x) 2f'(x) f(x) = 0.$ (2)
 - (b) Démontrer que g est une solution particulière de (1).
 - (c) Démontrer que f est une solution de (1) si et seulement si f-g est une solution de (2).
 - (d) Résoudre l'équation (1).