MINESEC Lycée de Japoma Département de Mathématiques

www.easy-maths.org

Année scolaire : 2010-2011

Classe: 2^{nde}C Durée: 3 heures

Séquence 5 Mai 2011

Coef: 06

Épreuve de Mathématiques

Examinateur : **Njionou Patrick, S**

Le correcteur tiendra compte de la rigueur dans la rédaction et de la clarté de la copie. Il est demandé à l'élève de justifier toutes ses affirmations.

Les exercices 1, 2 et le problème sont obligatoires pour tous. L'élève traitera au choix l'exercice 3 ou l'exercice 4.

Exercice 1. [5pts]

1. Soit *f* la fonction définie de \mathbb{R} vers \mathbb{R} par $f(x) = -x^2 + 4x - 3$.

1.1 Ecrire *f* sous la forme canonique.

1.2 a et b étant deux réels distincts, calculer le taux de variation de f entre a et b et en déduire le sens de variation de f sur $]-\infty;3]$ puis sur $[3;+\infty[$ et dresser son tableau de variation. [2pts]

2. On considère le polynôme $P(x) = 2x^3 + x^2 - 17x + 14$.

2.1 Calculer P(2). [0.5pt]

2.2 Faire la division euclidienne de P(x) par x-2. [0.5pt]

2.3 En déduire une factorisation complète de P(x).

[0.5pt]

[1pt]

2.4 Résoudre l'inéquation $P(x) \ge 0$. (On utilisera un tableau de signe).

[0.5pt]

Exercice 2. [3pts]

1. Résoudre dans \mathbb{R} .

1.1 (E_1) : $x^3 - x = 2 - 2x^3$. [0.5pt]

2.1 (I_1) : $3|2x+1| \ge 4|x-2|$. [1pt]

2. Résoudre dans $\mathbb{R} \times \mathbb{R} : (S_1) : \begin{cases} 3x - y = 15 \\ \frac{1}{2}x - y = 5 \end{cases}$, $(S_2) : \begin{cases} 3x^2 - \frac{1}{y-1} = 15 \\ \frac{1}{2}x^2 - \frac{1}{y-1} = 5 \end{cases}$. [1pt]

Exercice 3. [5pts]

1. Soit ABCD un carré, I le milieu de [BC] et J le point tel que : $\overrightarrow{CJ} = \frac{1}{4}\overrightarrow{CD}$.

1.1 Faire un dessin. [0.5pt]

1.2 Déterminer les coordonnées des points A, C, I et J dans le repère orthonormal $(B, \overrightarrow{BC}, \overrightarrow{BA})$. [0.5pt]

1.3 En déduire les coordonnées des vecteurs \overrightarrow{IA} et \overrightarrow{IJ} . [0.5pt]

1.2 Démontrer que $(IA)\perp(IJ)$. [0.5pt]

2. Soit deux vecteurs \vec{u} et \vec{v} tels que :

 $\|\vec{u}\| = \sqrt{2}; \quad \|\vec{v}\| = 5 \quad \text{et} \quad \vec{u}.\vec{v} = 7.$

On pose $\vec{i} = 4\vec{u} - \vec{v}$ et $\vec{j} = -3\vec{u} + \vec{v}$.

2.1 Calculer $\vec{i}.\vec{i}$ et en déduire $\|\vec{i}\|$. Calculer $\|\vec{j}\|$. [1pt]

2.2 Calculer $\vec{\imath}$. $\vec{\jmath}$. [0.5pt]

2.3 Quelle est la nature de la base (\vec{i}, \vec{j}) ?

[0.5pt]

- **3.** *ABC* est un triangle.
 - 3.1 Rappeler la formule de \overrightarrow{AB} . \overrightarrow{AC} , puis rappeler la formule d'Al-Kashi.

[0.5pt]

3.2 Montrer que $\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}(AC^2 + AB^2 - BC^2)$.

[0.5pt]

3.3 On donne AB = 4cm; BC = 5cm et AC = 2cm. Calculer \overrightarrow{AB} . \overrightarrow{AC} .

[0.5pt]

Exercice 4. [5pts]

On a relevé le poids en kg de 30 personnes et on a obtenu les résultats suivants.

x_i	59	62	65	68	71	74	77
n_i	1	4	6	7	5	5	2

1. Quel est le mode de cette série statistique?

[1pt]

2. Calculer la moyenne \bar{x} .

[1pt]

- **3.** Dresser le tableau des effectifs cumulés croissants et des effectifs cumulés décroissants puis déterminer une médiane. [1pt]
- **4.** Calculer l'écart moyen e_m .

[1pt]

5. Déterminer la variance V et déduire l'écart type σ de la série.

[1pt]

Problème [7pts]

Le plan est muni d'un repère orthonormé (O, I, J). On considère les points $B\begin{pmatrix} 1 \\ 5 \end{pmatrix}$ et $C\begin{pmatrix} -3 \\ -3 \end{pmatrix}$.

1. 1.1 Trouver une équation cartésienne du cercle (\mathscr{C}_0) de diamètre [BC].

[1pt]

1.2 Préciser les coordonnées du centre de ce cercle ainsi que son rayon.

[0.5pt]

- **2.** On considère la cercle (\mathscr{C}) d'équation $x^2 + y^2 6x 4y 3 = 0$, le point $A\binom{1}{0}$ et le vecteur $\vec{u}\binom{-1}{1}$.
 - 2.1 Ecrire une équation paramétrique de la droite (\mathcal{D}) passant par A et dirigée par \vec{u} . [0.5pt]
 - 2.2 Déterminer les points d'intersection de (\mathscr{C}) et (\mathscr{D}) .

[1pt]

- **3.** Soit (\mathcal{D}') la droite de représentation paramétrique $\begin{cases} x = 2 + 3t \\ y = 1 4t \end{cases} (t \in \mathbb{R}).$
 - 3.1 (\mathcal{D}) et (\mathcal{D}') sont elles parallèles?

[0.5pt]

3.2 Trouver les coordonnées de leur point d'intersection si possible.

[1pt]

3.3 Les points $E\begin{pmatrix} 0 \\ -2 \end{pmatrix}$ et $F\begin{pmatrix} 5 \\ -3 \end{pmatrix}$ appartiennent t-ils à (\mathcal{D}') ?

[0.5pt]

- 3.4 Soit (Δ) la droite d'équation cartésienne : 3x 4y 5 = 0. Justifier que (\mathcal{D}') et (Δ) sont perpendiculaires. [1pt]
- **4.** Déterminer la nature et les éléments caractéristiques des points $M\binom{x}{y}$ vérifiant $x^2 + y^2 6x 4y 3 = 0$. [1pt]

«Avant de commencer à prier le Seigneur, il faut d'abord travailler. Pendant que vous travaillez, n'oubliez pas de prier le Seigneur . ». Labor omnia vincit Improbus. Carpe diem. Bonne chance.